
An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,.. 

Singaporean Journal of Scientific Research(SJSR)  
International Journal of Technology and Engineering System(IJTES) 

Vol.8.No.3 2016 Pp.176-189 

available at :www.iaaet.org/sjsr  

Paper Received : 08-03-2016  

Paper Accepted: 19-04-2016  

Paper Reviewed by: 1.Prof. Cheng Yu 2. Dr.M. Akshay Kumar  

Editor : Dr. Chu Lio 

 

176 

 

 

AN EFFECTIVE CLUSTERING METHOD WITH SEARCH STRUCTURE FOR 

LARGE MULTIDIMENSIONAL DYNAMIC INDEXES 
 

1
 Sunil Sunny Chalakkal MCA, M.Phil,   

2
 Dr. M. Rajalakshmi , 

3
 Dr. R. Vijayakumar 

 

 

ABSTRACT: One of the most elemental data 

analysis techniques is clustering, which is 

extensively employed in numerous analytic 

applications. On the other hand, recognization 

and evaluation of multidimensional clustering 

results, in particular the cluster values and 

semantics, had become a complicated task. In 

case of huge and multifaceted data, to evaluate 

the cluster quality, tremendous level of 

statistical information about the clusters is 

frequently required. Simultaneously in order to 

recognize the significance of the clusters , 

comprehensive display of multidimensional 

attributes of the data are mandatorily 

required. The paper describes the designed the 

Distributed Weighted Possibilistic C-Means 

(DWPCM) algorithm based on MapReduce, 

which intends at enhancing the cluster speed. 

Also, the Cluster Tree++ indexing scheme is 

formulated for the purpose of distributed multi 

dimensional point data. The proposed indexing 

structure can be observed as integrated 

features of the Cluster tree+ with Simple prefix 

B+ tree in order to diminish the memory 

utilization during the process of indexing. All 

the incoming original data item along with the 

time information is appended to the Cluster  

 

Tree. This information is used during the 

process of data updating  for acquiring the new 

cluster structure. Therefore  the  cluster tree is 

always in the updated position .Hence this 

scheme ensures that it tremendously supports 

the adaptation to any type of clusters. The 

efficiency of data insertion, query and update 

process is improved very efficiently. The 

experimentation is done using real-world  

 

datasets like CAR, HYD and TLK, which 

clearly demonstrate that the proposed scheme 

can produce effective results with better 

scalability and selectivity with very low 

memory usage.  

 

KEY WORDS: Indexing, cluster representation, 

nearest-neighbor search, distributed Multi-

dimensional data sets, Cluster Tree++ indexing 

approach. 

 

1. INTRODUCTION 

 

During the process of index structure, it 

arranges the complete dataset to support well-

organized inquiry. In recent times, several 

applications need effective access and handling of 
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large-scale multi-dimensional datasets. For 

instance, several features obtained from the image 

datasets are high-dimensional vectors [1]. 

Moreover, in the area of bioinformatics, the huge-

scale multi-dimensional datasets are formed by 

the data of gene expression attained from the 

microarray images of DNA. 

Major challenging disputes during 

indexing of the datasets for well-organized 

querying are high dimensionality and massive size 

of these datasets. The design of indices to 

maintain high-dimensional data search turns out to 

be an active research area. Several schemes have 

been formulated for the purpose of indexing 

multi-dimensional datasets. These schemes can 

inventively encourage the search for nearest 

neighbor in comparatively low dimensional 

datasets [2]. Currently, the majority of studies in 

index design [3] concentrate on high-dimensional 

datasets. In spite of the dynamic data point 

introduction by the indexing strategies, their 

functionality might be misrepresented. The 

trouble with a dynamic index structure is that the 

recently-popped in data points possibly will 

source for the structure no longer competently 

handles the entire dataset. It can significantly 

increase the quantity of data retrieved for a query.  

 

At the same time as the dimensionality 

rises and the dataset are very huge, the 

effectiveness for queries becomes a key issue. For 

creating a proficient index for the successful 

functioning in large dataset with higher 

dimensionality, on the whole data distributions or 

patterns must be taken into account to diminish 

the influences of subjective inserting. In [4, 5], to 

optimize an obtainable dynamic index, an efficient 

“packing” schemes are invented by considering 

the distribution of data. Clustering is a type of 

scrutiny method for the purpose of determining 

the concerned patterns and distributions of data 

and in the dataset. Provided a collection of n data 

points in a d-dimensional space, a clustering 

scheme allocates the data points to k groups 

(k<<n) in accordance with the computation of the 

level of analogous among data points in order that 

the data points inside a set are extremely 

comparable to one another than the data points in 

other sets known as cluster. Supervised clustering 

schemes usually need a   number of sets, as a 

priori, however it is inapplicable for unsupervised 

clustering schemes. The discovery of the cluster 

organizations is extremely important to construct 

an index structure for implementation in high-

dimensional datasets to assist efficient inquiries 

[6]. Numerous clustering schemes have been 

discussed in the review survey [7].  

 

On the other hand, the majority of the 

clustering schemes can merely group the datasets 

statically, indicating  that the creation of clusters 

can just be off-line alone. These schemes cannot 

competently manage created data to get attached. 

In the scenario when the created data is inserted 

and the outline of the cluster transforms, the 

clustering method  will  be applied again on the 

complete dataset devoid of discerning the created 

data and the previously btainable data. This 

inflexibility  significantly controls the applications 

that have original data to be added recurrently. 

Out of all  those schemes, the ClusterTree [8] is 

the initial work to construct proficient index 

organization for clustering for high-dimensional 

datasets. It is a new dynamic indexing scheme 

offers a solid cluster representation to level the 

progress of efficient querying. ClusterTree is a 

tree of clusters and subclusters which integrates 

the cluster arrangement into the index 

construction to accomplish successful and well-

organized attainment. The cluster is extremely 

adaptive to any category of clusters and can 

discover the new development of the data 

distribution. The spatially nearer data points are 

logically clustered collectively in the ClusterTree.  

 

The linearly search of the high-

dimensional dataset is not necessary for the 

ClusterTree for efficiently maintaining the 

retrieval of the adjacent neighbors. Till now, the 

ClusterTree is the initial work towards 

constructing well-organized index structure from 

clustering for high-dimensional datasets. 
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Currently, a huge amount of the dataset is time 

interrelated, and dataset processing may get 

humiliated dangerously due to the continuation of 

the outdated data in the dataset. To get rid of the 

outdated data and maintain the dataset constantly 

in the most updated status for the ease and 

efficient processing of dataset like query and 

insertion and updating. A few schemes are 

formulated to execute the maintenance of the 

complete set of data. Here a newly proposed 

ClusterTree++ indexing structure which has novel 

characteristics based on time point of view. Every 

incoming original data item along with the time 

information is appended to the Cluster Tree. This 

information is used during the process of data 

updating for acquiring the new cluster structure. 

This scheme ensures that, Cluster Tree++ is 

constantly updated and   tremendously supports 

the adaptation to any type of clusters. The 

efficiency of data insertion, query and update 

process is improved very efficiently.The process 

described in the paper is structured as follows. 

The related work on index structure designs 

including the Cluster Tree and Clustering 

techniques summarized in Section 2. The new 

clustering method applicable to distributed 

multidimensional datasets is described in Section 

3. The processing of Cluster Tree is described in 

section 4. The conclusion is given in Section 5. 

 

2. RELATED WORK 

 

In the area of data mining clustering is a key 

method and an important research area for 

researchers. In clustering a set of objects is 

divided into clusters in order that the patterns of 

the objects in that group are extremely similar to 

each other than the objects in the other clusters. 

For larger databases different clustering schemes 

are available such as KMEANS[9]. 

CLARANS[10],BIRCH[11],CURE[12],DBSCAN

[13],OPTICS[14],STING[15] and CLIQUE, The 

above mentioned schemes can be partitioned into 

different schemes. The most renowned methods 

are partitioning, hierarchical and density based. 

Every method tries to challenge the clustering 

problems for data in large databases. Whereas 

most of them are not very effective for large 

databases. For density based clustering schemes 

has the intention to find clusters of arbitrary shape 

databases with noise, the cluster is defined as a 

high density area segregated with low –density 

regions in data space. DBSCAN-Density Based 

Spatial Clustering is a scheme on density based 

clustering.  

 

In terms of size multidimensional 

databases are normally very large. Large volumes 

of data requires an effective well patterned access 

techniques to facilitate it ,due to unproductive 

access method the working on complicated data 

representation and reasoning might be lost. For 

different applications, the accumulation of 

multidimensional data is maintained at a 

minimum level since it needs better care to retain 

its efficiency. The intensity of maintenance can be 

complicated to fulfill and difficult to maintain 

which might be resulting to poor reaction times 

[16], where the performance reduces drastically 

when the count on dimension rises, finally they do 

not grow into higher dimensions [17].With the 

increase in dimensions the complications on the 

multidimensional data increases. Once the count 

of dimensions increases to three or four additional 

trouble rises which reduces the access techniques 

efficiency. 

For more dimensionality such as 10 and 

more, the indexing methods available do not work 

out in an optimal way, which states that a 

sequential scan of the table happens to be quicker 

which means a lesser amount of time/less block 

access for the index to respond most queries [18]. 

 Data becomes more sparse and the 

distance metrics lose their meaning in case of 

higher dimensional space.In case of more 

dimensions count such as 10-15 dimensions, when 

its not divided or segmented can develop into 

large since there is no sufficient data to initiate 

splitting of all dimensions. Space is wasted on 

unwanted information on the unsegregated 

dimensions. 
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During the time of higher dimensional 

space, data turns out to be extremely sparse and 

distance metrics lose their meaning. In case of 

more than 10-15 dimensions, the amount of 

dimensions that are not partitioned can develop 

into large as there are simply not adequate data to 

necessitate all dimensions to be split. This makes 

nodes to waste space on unnecessary information 

on these unsegment dimensions. The property of 

selectivity is not supported and the internal nodes 

can provide a small selectivity over the index tree. 

Handling large number of dimensions can be done 

by different dimensionality reduction schemes 

where the original space is reduced to a lower 

dimensional subspace{19],Additional resources 

and the original data are needed for the 

transformations of data or queries. Therefore just 

dimension reduction alone is not a feasible 

solution in different application areas and there 

raises a requirement for a better access technique 

to deal with medium to high dimensional vector. 

Different types of methods have been developed 

with the objective of effective management of 

multidimensional data. A key scheme Space 

Filling Curve (SFC) schemes are introduced. 

CPU utilization and high level of 

overlapping among pages and the query interval 

are the major drawbacks of the SFC 

schemes.Space filling curve is incorporated by the 

UB-Tree[20],the B+Tree generates primary index 

for multidimensional data. Modifications to the 

kernel for the need of integration are shortfalls of 

UB-Tree, similar to other SFC the segments are 

not hyper cubic and will possibly correspond to 

disjoint space. The K-D-Tree is a most well 

known dimensional point data structures which 

also has alternates such as the HB-TREE [22], the 

BDTREE [23],the hybrid tree[24] and the quad –

Tree. 

The most similar deficiency to the entire 

K-D-Tree schemes is that for particular 

distributions, the hyperplane for partitioning the 

data objects equally is not found. For effective 

organization of temporal data some methods are 

there which facilitates the process of integrating 

with commercial database management systems 

[25].but the problem is that these methods cannot 

effectively support high dimensional queries.  

 

3. CLUSTERING-BASED INDEXING 

STRUCTURES 

 

The major concept of Clustering-based 

indexing structures is initially make use of the 

clustering algorithms with the intention of 

clustering the data points, and subsequently utilize 

approximation at search phase in such a manner 

that search can be made on the derived clusters 

which has the most chances of the closest 

neighbors of the query point .The common 

structural design of the clustering-based structures 

is given in Fig.1. Clustering-based indexing 

structures comprise two phases: clustering phase 

and search phase.  

 

 
Fig.1. Proposed Work 

 

3.1 Clustering phase 

In this section, proposes a Distributed WPCM 

algorithm (DWPCM) in accordance with 

MapReduce. There are two major processes in this 

phase, they are calculating the degree of 

membership     and computing the clustering 

centers   . During the map phase, the Map 

function is used to compute the degree of 

membership    .  

 

Clustering Phase 

Data 

 

Distributed Multi 

dimensional Database 

Distributed weighted 

possibilistic c-means 

Clustering algorithm 

(DWPCM)  

Clustered Result 

Search Phase (Indexed through 

their Centroids and indexing 

structure done using Tree 

approach) 

User Query 

Cluster Tree++ Indexing 

approach 

Query based Result 
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Table 1. Map function Algorithm 

 

                                                 

 

Problem: Given the global variable centers, the offset 

key and the sample value the map function  

                 algorithm calculates        and s_value  

Algorithm 

1. Data Object is partitioned and sample instance is 

constructed from the sample value 

2.   
    and   

    are calculated by Mapping function 

using equations 1 and 2 

2.1 Set                                

2.2 Set                  

2.3 Set      

2.4 Repeat steps 2.5 through 2.8 until 

i<=                    

2.5                                              

2.6                                 if no goto step 2.4 

2.7                       

2.8                    goto step 2.4 

2.9                           

3. Print  ⟨                ⟩ 

4. Perform  combine (s_key, s_ Value) 

5. Do 

6.                  
7.                                                 

7.1                                             

7.2                                  

7.3                             

8.                      
9.                   
10.        
11.                       
12. Call the procedure                             

13.      
 

 

 

To revise cluster centers in parallel, two 

parameters,   
    and   

   , are introduced, where   

indicates the serial number of data node. 

Following to the computation of the membership 

   , the Map function determines   
    and   

    with 

the help of equation (1) and (2); 

 

  
   

 ∑      
           

    

   

 
(1) 

  
   

 ∑      
         

    

   

 
(2) 

 

Table 2. Reduce function Algorithm 

 

 

 
Fig.2.Map Reduce Programming Model 

As a final point, the Map function 

outputs ⟨             ⟩, where   indicates the 

Algorithm 2.map_reduce(s_key’ ,s_list ) 

Problem: Given s_key’ ,s_list as input to 

map_reduce function, it reduces to the point centre 

v_i. 

Algorithm 

1. Initialize an array record. 

2. Set num_count as 0.  

3. Repeat steps 4 through 6 until the 

function V.hasNext() returns true. 

4. Using V.next() the sample instance is 

constructed. 

5. Fill those values to the array. 

6. Increment num_count by num_count. 

7. Array entries are divided by num_count. 

8. Set s_key as s_key’. 

9. s_value’ is constructed. 

10. Print v_i using equation (3) . 

11. End. 

 

INPUT INPUT INPUT     INPUT 

MAP MAP 

 

MAP     MAP 

 𝑘 𝑉   𝑘 𝑉   𝑘 𝑉   𝑘 𝑉  

Shuffling: Group values by keys  

 𝑘′ 𝑉′   𝑘′ 𝑉′   𝑘′ 𝑉′   𝑘′ 𝑉′   𝑘′ 𝑉′  

REDUCE REDUCE REDUCE REDUCE 

 𝑘 ′ 𝑙𝑖𝑠𝑡 𝑉′    𝑘 ′ 𝑙𝑖𝑠𝑡 𝑉′    𝑘 ′ 𝑙𝑖𝑠𝑡 𝑉′    𝑘 ′ 𝑙𝑖𝑠𝑡 𝑉′   

OUTPUT OUTPUT OUTPUT OUTPUT 

𝑣𝑖 𝑣𝑖 𝑣𝑖 

  

𝑣𝑖   
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number of classes,      indicates the identifier of 

the class and        indicates a vector that includes 

    
    and   

   . During the reduce phase, the Reduce 

function is intended to compute the clustering 

centers   . The input of the Reduce function is a 

key list, where      indicates the identifier of the 

class and      comprises the entire value’s along 

with the same      derived from the map function. 

The Reduce function is accountable for computing 

the cluster centers in accordance with the equation 

(3); 

    
∑   

    
   

∑   

    
   

 

 

(3) 

Where,   indicates the quantity of the data nodes 

and   indicates the identifier of the class, which 

comprise the same explanation with    ́ . 

 

3.2 Search phase 

During this phase, initially the hierarchical 

structure of the Cluster Tree++ is introduced. 

Subsequently, a method is proposed for breaking 

down a cluster into multiple sub clusters with an 

algorithm to produce Cluster Tree ++ by means of 

braking down the clusters recursively. 

ClusterTree++ depends on the design of the 

ClusterTree+ and improves its ability to manage 

dynamic data insertions, queries and deletions. 

There are different methods to connect the time 

information with the original ClusterTree 

structure. The three different methods are: First 

one is, openly append time details into the 

ClusterTree+ as another dimension. Second, make 

use of an uncomplicated queue to process the time 

issue, The third one is to manage the time 

information an independent simple Prefix B++ 

tree similar structure is used. The key advantage 

of this method is that it makes the process of 

implementation easier and effective.The original 

algorithm can be slightly modified to maintain 

queries related to time details and deletions with 

reference to the time period indicated by users.  

The disadvantage is that the clustering 

process results will considerably change when we 

directly take time details as an additional 

dimension of the data set. When adding the time 

dimensions two data points which are very close 

to each other might not even exist in the similar 

cluster, in view of the fact that the data are 

inserted into the indexing structure might be fairly 

far-away to each other. Subsequently ,the queries 

which are dependent on the data itself and its 

query results are corrupted. The concept of using 

an uncomplicated queue to process the time issue 

is easy.  

However, as a linear structure, the 

effectiveness is the major complication. By means 

of an individual simple prefix B+ tree-similar 

structure to manage the time details can support 

both time-associated queries and time-unrelated 

queries, “simple prefix” points out that the index 

set encloses shortest separators, or prefixes of the 

keys more willingly than copies of the actual keys. 

In case of time-irrelevant queries, algorithms like 

those of the original ClusterTree are used. In case 

of time-related queries including range queries 

and by means of an individual B+-Nearest 

Neighbors queries, the intersection of searching 

result of both modified ClusterTree+ structure and 

B+ tree common structure can be used to obtain 

the ultimate result. These schemes can moreover 

efficiently handle user specified periodic deletions 

to throw away the outdated data in the dataset. As 

a result, the last category of scheme is selected to 

set up the ClusterTree indexing structure as the 

solution to solve the data update complication of 

high dimensional datasets.  
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Two independent structures are included, 

first one is a modified ClusterTree+ structure 

known as ClusterTree++, the additional simple 

prefix B+ tree. Hierarchical representation of the 

clusters is called as the Cluster Tree. The cluster 

tree includes two types of nodes namely internal 

and leaf nodes. The internal node is represented in 

the below format: 

                                                      
                     

                     

where        represents the node 

identifier,   indicates the quantity of the arrival in 

the node,    represents the past time of when the 

data was introduced into the node or its 

descendants, and    describe the present time 

when data are introduced into that node or its 

descendants,         and         intimates the 

least and highest number of entries in the node. 

For every subclusters an entry is generated for 

which the current nonleaf node corresponds to. In 

case of entry       ,     shows a pointer to the 

     sub clusters,     indicates the bounding 

sphere for the sub cluster and     indicates the 

amount of data points in the  -th sub clusters. The 

extreme final  leaf nodes are given as follows: 

                                                  
(                 )  

                    

 

Where   indicates the number of data 

points enclosed in the leaf node, and         and 

        indicates the lowest and highest amount of 

entries. The        shows the address of the 

datapoint at the secondary storage includes the 

address of the data point exist at the secondary 

storage (   ), the time related informations when 

the data point is introduced into the structure       

and the connection to the time data point in the 

simple prefix B+ tree     . For the simple prefix 

B+ tree indexes on the time data which is 

equivalent to the number of times the data were 

brought  into the structure. It begins from the B+ 

tree with certain changes like: There is no lowest 

number requirement of entries in the place of 

internal and leaf nodes, in order that there will be 

no cases of underflow. This is equivalent to the 

character of the prefix B++ tree stating the time 

data in it will be removed collectively based on 

the user specified condition. 

 For the  leaf nodes, all entry has an added 

field which is a interface to the data point it is 

connected with in the ClusterTree++. In this 

scenario, we can navigate from the simple prefix 

B+ tree back to the ClusterTree++ proficiently. 

The separators in the index set is lesser than the 

keys in the sequence set ==> Tree is even smaller. 

Consecutive insertions are not a better method 

since splitting and redistribution are reasonably 

costly and would be finest to make use of only for 

tree maintenance. Beginning from an arranged 

file, on the other hand, it is easy to place the 

records into sequence set blocks one by one, 

opening a new block when the current working 

block with fills up. Since, the changeover is done 

among two sequence set blocks, it is easy to 

determine the shortest separator for blocks. These 

separators are collected into an index set block 

that is constructed and added in memory until it is 

occupied. The benefits of filling a simple Prefix 

B+ Tree more or less constantly outweigh  

shortcomings related with chance of generating 

blocks that enclose very few records or very few 

separators.  

A specific improvement is that the loading 

procedure goes more rapidly since: The output can 

be written in series; only one pass can be made 

over the data; No blocks required to be rearranged 
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during the process. The major benefit after the tree 

is loaded is that the blocks are 100% occupied. 

Sequential loading generates a degree of spatial 

locality inside the file ==> Seeking can be 

reduced. The major three stipulations are: In case 

when blocks are divided in the sequence set, a 

fresh separator has to be introduced into the index 

set. When blocks are combined in the sequence 

set, a separator has to be eliminated from the 

index set. When records are re-allocated among 

blocks in the sequence set, the value of a separator 

in the index set have to be transformed. 

Construction 

The stages in the building of 

ClusterTree++ includes the production of  

ClusterTree++ and developing of simple prefix 

B+ tree in parallel. The developmet of the 

ClusterTree++ is same as the development of 

ClusterTree+ and tehn every internal node and 

leaf node has to set the ct(current time) and ht 

(historic time) as the current time.Since there is no 

information related to the insertion time of the 

original data points in the dataset, therefore it is 

mandatory to fix the information as a result it is 

essential to fix the insertion times of the entire 

original data points as the current one. When new 

data points are introduced into the structure it has 

to be recorded into the structure. Meanwhile,the 

current time datais incorporated by a leaf node 

using the simple prefix B+s tree. All the L fields 

of the entries in the leaf node of Cluster Tree+ has 

to be pointed to the generated leaf node in simple 

prefix B++tree. 

Processing of the ClusterTree 

Insertion,Query,Deletion are the most important 

processing of the Cluster Tree++ 

 Insertion  

For every new incoming data point, it’s important 

to divide it into one of the three groups: Cluster 

points: they are the duplicates or extremely similar 

to particular data points in a cluster inside a 

specified threshold. Close by points: They are the 

data points which are certain points in the clusters 

within a specific threshold. Random points: They 

are the data points which are not neighbors and 

distant from the entire clusters and cannot be 

bounded, or even at every level they cannot be 

incorporated. But they do not mention any 

neighboring cluster points inside a specified 

threshold. finally, in agreement with the type of 

the new coming data point, its is required to apply 

the insertion algorithm of Cluster Tree to serially 

insert data point to a specific leaf node of Cluster 

Tree++ and with the insertion time in the T(time) 

field of the new entry of the leaf node, which 

includes the inclusion of time details into the 

simple prefix B++ tree. The L(link) is a link 

between the specific leaf node in Cluster Tree++ 

to the new entry the         field of the new entry 

in the specific leaf node in Cluster Tree++ to the 

new entry in leaf node. 

Query 

Queries are classified into two types based 

on time ,The first category is the time irrelevant 

queries which includes the range queries and 

Nearest neighbor queries, the second category is 

time related query which includes time related 

queries with certain time period constraint. For 

example, specific users may demand neighbors to 

a specific data point which are included into the 

structure in equal time as the insertion time of that 

data point. It is based on the original Cluster Tree 

query algorithm to solve the former category of 

queries. 
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Table 3.Algorithm- time-related queries 

Problem: Given a data point and a time stamp, 

the algorithm calculates the set of data points  

                 in ClusterTree which satisfies the 

query. 

Algorithm 

1. Calculate the set A of candidate data points 

in the ClusterTree++; 

2. Locate an entry x in simple prefix B+tree 

where the time data of simple B+tree  

is close to the time stamp of query. 

3. Locate the set of entries with specific 

threshold in time distance to the entry x in 

simple prefix B+ tree. 

4. Construct a set B of equivalent data points 

in ClusterTree++ using the L field entries 

in simple prefix B+tree. 

5. Intersection of sets A and B gives the 

resultant data sets. 

 

 

Deletion 

The irrelevant data has to be deleted from time to 

time from many systems. The data administrator 

might need to delete those data which are 

introduced to the system and in some situations 

the might want delete some date inserted at some 

stage in a specific period.  

Table 4.Algorithm- time-related deletion1 

Problem: Given a time stamp ts, the algorithm 

constructs a new ClusterTree after removing the 

outdated data. 

Algorithm 

1. Locate the entry x in the simple prefix B+tree 

where the time data of entry x is close to the 

time stamp ts. 

2. Retrieve the entries, set A which are older than 

entry x from simple B+tree.  

3. Locate the resultant set B of data points in 

ClusterTree++ using the L field entries in 

simple prefix B+tree 

4. Recursively cut older entries than entry x from 

the simple prefix B+tree. 

5. Set A is cut from simple prefix B+tree. 

6. Set B is cut from ClusterTree++ 

 

 

In addition they can just point out to the data 

system to automatically fine-tune itself. The 

ClusterTree+ can support such user specified 

deletions. 

Table 5.Algorithm- time-related deletion2 

Problem: : Time stamp ts1, time stamp ts2 out puting 

the  new ClusterTree specified time stamps  ; 

Algorithm 

1. find the entry x in simple prefix B+ tree the 

time data of whose is right closest to the time 

stamp T1  

2. find the entry y in simple prefix B+tree the 

time data of whose is left closest to the time 

stamp T2; 

                if the time data of entry x is newer compared 

to that of entry y, 

               exit; 

3. get the set the  entries in the simple prefix B+ 

tree   

4. find the set b of similar data points in 

ClusterTree++ by means of the L field in the 

entries in simple prefix B+ 

5. cut those entries in the simple prefix B+tree  

6. cut set a seen in the B simple prefix B+tree; 

7. cut set b in the ClusterTree++. 

 

Table 6.Algorithm: automatic adjustment 

Problem: This recursive algorithm automatically 

adjust the new ClusterTree. 

Algorithm 

1. Recursively check each subcluster 
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2. Do 

2.1 Check whether the gap between 

subcluster’s not filed exceeds specific 

threshold. 

If yes either delete the complete 

subcluster or move the complete 

subcluster into  

the secondary memory until it no new 

data is reported. Also remove the 

equivalent  

entries from simple prefix B+tree. 

2.2 Check whether a subcluster’s old 

density exceeds specific threshold. If 

yes rearrange subcluster subsequently in 

order to get rid of old data part. 

2.3 Check for two closer subclusters and 

those with similar time nature. If found 

merge them into a single subcluster 

which gives a reasonable and more 

compact vision. 

Return. 

4. EXPERIMENTAL RESULTS AND 

DISCUSSION 

Here, distributed multi dimensional dataset is 

taken as input. Experiment demonstrates that 

DWPCM executes better than WPCM for multi-

dimensional dataset having streaming activities. It 

is to be observed that, the proposed DWPCM 

algorithm is an enhancement of WPCM. The 

subsequent real-world datasets are employed for 

conducting the tests: CAR includes 2,249,727 

road segments of California obtained from 

Tiger/Line datasets; (b) HYD includes 40,995,718 

line segments representing rivers of China and (c) 

TLK includes up to 157,425,887 points obtained 

from the elevation data of China.  

4.1 Memory Usage 

Given that DWPCM process data as amount of 

chunks calculated as memory utilization of every 

chunk independently and get the largest value as 

the closing memory consumption for DWPCM. In 

view of the fact that the dataset is streaming in 

character, it is not necessary for DWPCM to 

access over one chunk at a time. Figure 1 shows 

the percentage of improvement in terms of 

memory consumption by proposed (DWPCM) as 

compared against the Baseline Algorithm 

(WPCM).  

 

 

Fig.3. Memory Usage Comparison 

It is clear from table 7, the improvement is in 

excess of 97% for the entire three datasets. 

WPCM makes use of the complete dataset at a 

time and that's why it needs adequate memory to 

hold the entire dataset. This is the cause why 

WPCM needs much higher memory than the 

proposed algorithm. 

Table 7.Memory Usage Comparison 

Input 

Dataset 

DWPCM with 

Map reduce (%) 

WPCM 

(%) 

CAR 97.05 92 

HYD 97.25 92.35 

TLK 97.62 95.21 

 

4.2 Selectivity  

Figure 4 demonstrates the time and amount of 

page writes for the purpose of adding bounding 
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boxes, with several piece of data of large  sizes. In 

view of the fact that the data portion size reduces, 

then the amount of leaf nodes in the indexing trees 

increases, because only a predetermined size 

dataset undergoes partitioning. If the data portions 

size is         (or        ), approximately 

40,000 data portions are inserted into the indexing 

trees, however when the data portion size is 

      , approximately 560,000 data portions are 

present.  

 

Fig.4. Selectivity Comparison 

In actual fact, multi-dimensional indexing 

structures have to supply low amount of file 

access throughout the search since accessing to 

file pages diminishes the response time to a 

specific query and increase the selectivity. It is 

clear from the table 8 that the proposed indexing 

scheme of DWPCM with cluster tree++ is 

perform well than the WPCM with cluster tree+. 

Table 8.Selectivity Comparison 

Number of 

Data Chunks 

DWPCM with 

Cluster++ 

WPCM with 

Cluster + 

200 240 540 

400 354 621 

600 546 723 

800 654 850 

 

4.3 Scalability with query 

Figure 5 demonstrates the query experiment 

result. It is obvious from the results that Cluster 

Tree+ can resolve the multi-dimensional query 

inefficient setback, however Cluster Tree+ ++ 

execute much better than Cluster Tree+.  

 

Fig.5. Scalability Comparison 

Table 9 shows the values of scalability of the 

methods. It proves that the multi-dimensional 

distributed index ranges approximately linear with 

the number of nodes in the system. 

Table 9.Scalability Comparison 

Number 

of Data 

Chunks 

DWPCM 

with 

Cluster++ 

(ms) 

WPCM 

with Cluster 

+ (ms) 

200 694 700 

400 725 812 

600 810 915 

800 902 1025 

 

5. CONCLUSION 

In the scenario of distributed multi dimensional 

data, clustering conventional similarity measures 
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are typically will not provide the significant result. 

In order to overcome this issue, a Distributed 

Weighted Possibilistic Clustering Algorithm 

(DWPCM) is proposed here. DWPCM can be 

utilized for high dimensional datasets having 

streaming activities. Additionally, a customized 

edition of ClusterTree+ called as ClusterTree++ is 

proposed to   competently  maintain the time-

based queries and deletions specified by the user. 

The ClusterTree++ can maintain the set of data 

constantly in the most rationalized condition to 

uphold the competence and effectualness of data 

insertion, query and update. It is a ordered 

structure of clusters and subclusters which 

integrates the representation of cluster into the 

index configuration to realize efficient and well-

organized recovery of data. Experiments are done 

to assess the ClusterTree++. This scheme will be 

supportive in the areas of data fusion wherever the 

data change with dynamism and existing schemes 

frequently not succeed in solving the problem of 

keeping a certain structure constantly holding the 

most efficient data. This scheme can vigorously 

monitor the status of data of the system and 

competently evade the outdated data and 

simultaneously, reorganize the structure of the set 

of data. 
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