
An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

Singaporean Journal of Scientific Research(SJSR)
International Journal of Technology and Engineering System(IJTES)

Vol.8.No.3 2016 Pp.176-189

available at :www.iaaet.org/sjsr

Paper Received : 08-03-2016

Paper Accepted: 19-04-2016

Paper Reviewed by: 1.Prof. Cheng Yu 2. Dr.M. Akshay Kumar

Editor : Dr. Chu Lio

176

AN EFFECTIVE CLUSTERING METHOD WITH SEARCH STRUCTURE FOR

LARGE MULTIDIMENSIONAL DYNAMIC INDEXES

1
 Sunil Sunny Chalakkal MCA, M.Phil,

2
 Dr. M. Rajalakshmi ,

3
 Dr. R. Vijayakumar

ABSTRACT: One of the most elemental data

analysis techniques is clustering, which is

extensively employed in numerous analytic

applications. On the other hand, recognization

and evaluation of multidimensional clustering

results, in particular the cluster values and

semantics, had become a complicated task. In

case of huge and multifaceted data, to evaluate

the cluster quality, tremendous level of

statistical information about the clusters is

frequently required. Simultaneously in order to

recognize the significance of the clusters ,

comprehensive display of multidimensional

attributes of the data are mandatorily

required. The paper describes the designed the

Distributed Weighted Possibilistic C-Means

(DWPCM) algorithm based on MapReduce,

which intends at enhancing the cluster speed.

Also, the Cluster Tree++ indexing scheme is

formulated for the purpose of distributed multi

dimensional point data. The proposed indexing

structure can be observed as integrated

features of the Cluster tree+ with Simple prefix

B+ tree in order to diminish the memory

utilization during the process of indexing. All

the incoming original data item along with the

time information is appended to the Cluster

Tree. This information is used during the

process of data updating for acquiring the new

cluster structure. Therefore the cluster tree is

always in the updated position .Hence this

scheme ensures that it tremendously supports

the adaptation to any type of clusters. The

efficiency of data insertion, query and update

process is improved very efficiently. The

experimentation is done using real-world

datasets like CAR, HYD and TLK, which

clearly demonstrate that the proposed scheme

can produce effective results with better

scalability and selectivity with very low

memory usage.

KEY WORDS: Indexing, cluster representation,

nearest-neighbor search, distributed Multi-

dimensional data sets, Cluster Tree++ indexing

approach.

1. INTRODUCTION

During the process of index structure, it

arranges the complete dataset to support well-

organized inquiry. In recent times, several

applications need effective access and handling of

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

177

large-scale multi-dimensional datasets. For

instance, several features obtained from the image

datasets are high-dimensional vectors [1].

Moreover, in the area of bioinformatics, the huge-

scale multi-dimensional datasets are formed by

the data of gene expression attained from the

microarray images of DNA.

Major challenging disputes during

indexing of the datasets for well-organized

querying are high dimensionality and massive size

of these datasets. The design of indices to

maintain high-dimensional data search turns out to

be an active research area. Several schemes have

been formulated for the purpose of indexing

multi-dimensional datasets. These schemes can

inventively encourage the search for nearest

neighbor in comparatively low dimensional

datasets [2]. Currently, the majority of studies in

index design [3] concentrate on high-dimensional

datasets. In spite of the dynamic data point

introduction by the indexing strategies, their

functionality might be misrepresented. The

trouble with a dynamic index structure is that the

recently-popped in data points possibly will

source for the structure no longer competently

handles the entire dataset. It can significantly

increase the quantity of data retrieved for a query.

At the same time as the dimensionality

rises and the dataset are very huge, the

effectiveness for queries becomes a key issue. For

creating a proficient index for the successful

functioning in large dataset with higher

dimensionality, on the whole data distributions or

patterns must be taken into account to diminish

the influences of subjective inserting. In [4, 5], to

optimize an obtainable dynamic index, an efficient

“packing” schemes are invented by considering

the distribution of data. Clustering is a type of

scrutiny method for the purpose of determining

the concerned patterns and distributions of data

and in the dataset. Provided a collection of n data

points in a d-dimensional space, a clustering

scheme allocates the data points to k groups

(k<<n) in accordance with the computation of the

level of analogous among data points in order that

the data points inside a set are extremely

comparable to one another than the data points in

other sets known as cluster. Supervised clustering

schemes usually need a number of sets, as a

priori, however it is inapplicable for unsupervised

clustering schemes. The discovery of the cluster

organizations is extremely important to construct

an index structure for implementation in high-

dimensional datasets to assist efficient inquiries

[6]. Numerous clustering schemes have been

discussed in the review survey [7].

On the other hand, the majority of the

clustering schemes can merely group the datasets

statically, indicating that the creation of clusters

can just be off-line alone. These schemes cannot

competently manage created data to get attached.

In the scenario when the created data is inserted

and the outline of the cluster transforms, the

clustering method will be applied again on the

complete dataset devoid of discerning the created

data and the previously btainable data. This

inflexibility significantly controls the applications

that have original data to be added recurrently.

Out of all those schemes, the ClusterTree [8] is

the initial work to construct proficient index

organization for clustering for high-dimensional

datasets. It is a new dynamic indexing scheme

offers a solid cluster representation to level the

progress of efficient querying. ClusterTree is a

tree of clusters and subclusters which integrates

the cluster arrangement into the index

construction to accomplish successful and well-

organized attainment. The cluster is extremely

adaptive to any category of clusters and can

discover the new development of the data

distribution. The spatially nearer data points are

logically clustered collectively in the ClusterTree.

The linearly search of the high-

dimensional dataset is not necessary for the

ClusterTree for efficiently maintaining the

retrieval of the adjacent neighbors. Till now, the

ClusterTree is the initial work towards

constructing well-organized index structure from

clustering for high-dimensional datasets.

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

178

Currently, a huge amount of the dataset is time

interrelated, and dataset processing may get

humiliated dangerously due to the continuation of

the outdated data in the dataset. To get rid of the

outdated data and maintain the dataset constantly

in the most updated status for the ease and

efficient processing of dataset like query and

insertion and updating. A few schemes are

formulated to execute the maintenance of the

complete set of data. Here a newly proposed

ClusterTree++ indexing structure which has novel

characteristics based on time point of view. Every

incoming original data item along with the time

information is appended to the Cluster Tree. This

information is used during the process of data

updating for acquiring the new cluster structure.

This scheme ensures that, Cluster Tree++ is

constantly updated and tremendously supports

the adaptation to any type of clusters. The

efficiency of data insertion, query and update

process is improved very efficiently.The process

described in the paper is structured as follows.

The related work on index structure designs

including the Cluster Tree and Clustering

techniques summarized in Section 2. The new

clustering method applicable to distributed

multidimensional datasets is described in Section

3. The processing of Cluster Tree is described in

section 4. The conclusion is given in Section 5.

2. RELATED WORK

In the area of data mining clustering is a key

method and an important research area for

researchers. In clustering a set of objects is

divided into clusters in order that the patterns of

the objects in that group are extremely similar to

each other than the objects in the other clusters.

For larger databases different clustering schemes

are available such as KMEANS[9].

CLARANS[10],BIRCH[11],CURE[12],DBSCAN

[13],OPTICS[14],STING[15] and CLIQUE, The

above mentioned schemes can be partitioned into

different schemes. The most renowned methods

are partitioning, hierarchical and density based.

Every method tries to challenge the clustering

problems for data in large databases. Whereas

most of them are not very effective for large

databases. For density based clustering schemes

has the intention to find clusters of arbitrary shape

databases with noise, the cluster is defined as a

high density area segregated with low –density

regions in data space. DBSCAN-Density Based

Spatial Clustering is a scheme on density based

clustering.

In terms of size multidimensional

databases are normally very large. Large volumes

of data requires an effective well patterned access

techniques to facilitate it ,due to unproductive

access method the working on complicated data

representation and reasoning might be lost. For

different applications, the accumulation of

multidimensional data is maintained at a

minimum level since it needs better care to retain

its efficiency. The intensity of maintenance can be

complicated to fulfill and difficult to maintain

which might be resulting to poor reaction times

[16], where the performance reduces drastically

when the count on dimension rises, finally they do

not grow into higher dimensions [17].With the

increase in dimensions the complications on the

multidimensional data increases. Once the count

of dimensions increases to three or four additional

trouble rises which reduces the access techniques

efficiency.

For more dimensionality such as 10 and

more, the indexing methods available do not work

out in an optimal way, which states that a

sequential scan of the table happens to be quicker

which means a lesser amount of time/less block

access for the index to respond most queries [18].

 Data becomes more sparse and the

distance metrics lose their meaning in case of

higher dimensional space.In case of more

dimensions count such as 10-15 dimensions, when

its not divided or segmented can develop into

large since there is no sufficient data to initiate

splitting of all dimensions. Space is wasted on

unwanted information on the unsegregated

dimensions.

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

179

During the time of higher dimensional

space, data turns out to be extremely sparse and

distance metrics lose their meaning. In case of

more than 10-15 dimensions, the amount of

dimensions that are not partitioned can develop

into large as there are simply not adequate data to

necessitate all dimensions to be split. This makes

nodes to waste space on unnecessary information

on these unsegment dimensions. The property of

selectivity is not supported and the internal nodes

can provide a small selectivity over the index tree.

Handling large number of dimensions can be done

by different dimensionality reduction schemes

where the original space is reduced to a lower

dimensional subspace{19],Additional resources

and the original data are needed for the

transformations of data or queries. Therefore just

dimension reduction alone is not a feasible

solution in different application areas and there

raises a requirement for a better access technique

to deal with medium to high dimensional vector.

Different types of methods have been developed

with the objective of effective management of

multidimensional data. A key scheme Space

Filling Curve (SFC) schemes are introduced.

CPU utilization and high level of

overlapping among pages and the query interval

are the major drawbacks of the SFC

schemes.Space filling curve is incorporated by the

UB-Tree[20],the B+Tree generates primary index

for multidimensional data. Modifications to the

kernel for the need of integration are shortfalls of

UB-Tree, similar to other SFC the segments are

not hyper cubic and will possibly correspond to

disjoint space. The K-D-Tree is a most well

known dimensional point data structures which

also has alternates such as the HB-TREE [22], the

BDTREE [23],the hybrid tree[24] and the quad –

Tree.

The most similar deficiency to the entire

K-D-Tree schemes is that for particular

distributions, the hyperplane for partitioning the

data objects equally is not found. For effective

organization of temporal data some methods are

there which facilitates the process of integrating

with commercial database management systems

[25].but the problem is that these methods cannot

effectively support high dimensional queries.

3. CLUSTERING-BASED INDEXING

STRUCTURES

The major concept of Clustering-based

indexing structures is initially make use of the

clustering algorithms with the intention of

clustering the data points, and subsequently utilize

approximation at search phase in such a manner

that search can be made on the derived clusters

which has the most chances of the closest

neighbors of the query point .The common

structural design of the clustering-based structures

is given in Fig.1. Clustering-based indexing

structures comprise two phases: clustering phase

and search phase.

Fig.1. Proposed Work

3.1 Clustering phase

In this section, proposes a Distributed WPCM

algorithm (DWPCM) in accordance with

MapReduce. There are two major processes in this

phase, they are calculating the degree of

membership and computing the clustering

centers . During the map phase, the Map

function is used to compute the degree of

membership .

Clustering Phase

Data

Distributed Multi

dimensional Database

Distributed weighted

possibilistic c-means

Clustering algorithm

(DWPCM)

Clustered Result

Search Phase (Indexed through

their Centroids and indexing

structure done using Tree

approach)

User Query

Cluster Tree++ Indexing

approach

Query based Result

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

180

Table 1. Map function Algorithm

Problem: Given the global variable centers, the offset

key and the sample value the map function

 algorithm calculates and s_value

Algorithm

1. Data Object is partitioned and sample instance is

constructed from the sample value

2.
 and

 are calculated by Mapping function

using equations 1 and 2

2.1 Set

2.2 Set

2.3 Set

2.4 Repeat steps 2.5 through 2.8 until

i<=

2.5

2.6 if no goto step 2.4

2.7

2.8 goto step 2.4

2.9

3. Print ⟨ ⟩

4. Perform combine (s_key, s_ Value)

5. Do

6.
7.

7.1

7.2

7.3

8.
9.
10.
11.
12. Call the procedure

13.

To revise cluster centers in parallel, two

parameters,
 and

 , are introduced, where

indicates the serial number of data node.

Following to the computation of the membership

 , the Map function determines
 and

 with

the help of equation (1) and (2);

 ∑

(1)

 ∑

(2)

Table 2. Reduce function Algorithm

Fig.2.Map Reduce Programming Model

As a final point, the Map function

outputs ⟨ ⟩, where indicates the

Algorithm 2.map_reduce(s_key’ ,s_list)

Problem: Given s_key’ ,s_list as input to

map_reduce function, it reduces to the point centre

v_i.

Algorithm

1. Initialize an array record.

2. Set num_count as 0.

3. Repeat steps 4 through 6 until the

function V.hasNext() returns true.

4. Using V.next() the sample instance is

constructed.

5. Fill those values to the array.

6. Increment num_count by num_count.

7. Array entries are divided by num_count.

8. Set s_key as s_key’.

9. s_value’ is constructed.

10. Print v_i using equation (3) .

11. End.

INPUT INPUT INPUT INPUT

MAP MAP

MAP MAP

 𝑘 𝑉 𝑘 𝑉 𝑘 𝑉 𝑘 𝑉

Shuffling: Group values by keys

 𝑘′ 𝑉′ 𝑘′ 𝑉′ 𝑘′ 𝑉′ 𝑘′ 𝑉′ 𝑘′ 𝑉′

REDUCE REDUCE REDUCE REDUCE

 𝑘 ′ 𝑙𝑖𝑠𝑡 𝑉′ 𝑘 ′ 𝑙𝑖𝑠𝑡 𝑉′ 𝑘 ′ 𝑙𝑖𝑠𝑡 𝑉′ 𝑘 ′ 𝑙𝑖𝑠𝑡 𝑉′

OUTPUT OUTPUT OUTPUT OUTPUT

𝑣𝑖 𝑣𝑖 𝑣𝑖

𝑣𝑖

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

181

number of classes, indicates the identifier of

the class and indicates a vector that includes

 and

 . During the reduce phase, the Reduce

function is intended to compute the clustering

centers . The input of the Reduce function is a

key list, where indicates the identifier of the

class and comprises the entire value’s along

with the same derived from the map function.

The Reduce function is accountable for computing

the cluster centers in accordance with the equation

(3);

∑

∑

(3)

Where, indicates the quantity of the data nodes

and indicates the identifier of the class, which

comprise the same explanation with ́ .

3.2 Search phase

During this phase, initially the hierarchical

structure of the Cluster Tree++ is introduced.

Subsequently, a method is proposed for breaking

down a cluster into multiple sub clusters with an

algorithm to produce Cluster Tree ++ by means of

braking down the clusters recursively.

ClusterTree++ depends on the design of the

ClusterTree+ and improves its ability to manage

dynamic data insertions, queries and deletions.

There are different methods to connect the time

information with the original ClusterTree

structure. The three different methods are: First

one is, openly append time details into the

ClusterTree+ as another dimension. Second, make

use of an uncomplicated queue to process the time

issue, The third one is to manage the time

information an independent simple Prefix B++

tree similar structure is used. The key advantage

of this method is that it makes the process of

implementation easier and effective.The original

algorithm can be slightly modified to maintain

queries related to time details and deletions with

reference to the time period indicated by users.

The disadvantage is that the clustering

process results will considerably change when we

directly take time details as an additional

dimension of the data set. When adding the time

dimensions two data points which are very close

to each other might not even exist in the similar

cluster, in view of the fact that the data are

inserted into the indexing structure might be fairly

far-away to each other. Subsequently ,the queries

which are dependent on the data itself and its

query results are corrupted. The concept of using

an uncomplicated queue to process the time issue

is easy.

However, as a linear structure, the

effectiveness is the major complication. By means

of an individual simple prefix B+ tree-similar

structure to manage the time details can support

both time-associated queries and time-unrelated

queries, “simple prefix” points out that the index

set encloses shortest separators, or prefixes of the

keys more willingly than copies of the actual keys.

In case of time-irrelevant queries, algorithms like

those of the original ClusterTree are used. In case

of time-related queries including range queries

and by means of an individual B+-Nearest

Neighbors queries, the intersection of searching

result of both modified ClusterTree+ structure and

B+ tree common structure can be used to obtain

the ultimate result. These schemes can moreover

efficiently handle user specified periodic deletions

to throw away the outdated data in the dataset. As

a result, the last category of scheme is selected to

set up the ClusterTree indexing structure as the

solution to solve the data update complication of

high dimensional datasets.

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

182

Two independent structures are included,

first one is a modified ClusterTree+ structure

known as ClusterTree++, the additional simple

prefix B+ tree. Hierarchical representation of the

clusters is called as the Cluster Tree. The cluster

tree includes two types of nodes namely internal

and leaf nodes. The internal node is represented in

the below format:

where represents the node

identifier, indicates the quantity of the arrival in

the node, represents the past time of when the

data was introduced into the node or its

descendants, and describe the present time

when data are introduced into that node or its

descendants, and intimates the

least and highest number of entries in the node.

For every subclusters an entry is generated for

which the current nonleaf node corresponds to. In

case of entry , shows a pointer to the

 sub clusters, indicates the bounding

sphere for the sub cluster and indicates the

amount of data points in the -th sub clusters. The

extreme final leaf nodes are given as follows:

()

Where indicates the number of data

points enclosed in the leaf node, and and

 indicates the lowest and highest amount of

entries. The shows the address of the

datapoint at the secondary storage includes the

address of the data point exist at the secondary

storage (), the time related informations when

the data point is introduced into the structure

and the connection to the time data point in the

simple prefix B+ tree . For the simple prefix

B+ tree indexes on the time data which is

equivalent to the number of times the data were

brought into the structure. It begins from the B+

tree with certain changes like: There is no lowest

number requirement of entries in the place of

internal and leaf nodes, in order that there will be

no cases of underflow. This is equivalent to the

character of the prefix B++ tree stating the time

data in it will be removed collectively based on

the user specified condition.

 For the leaf nodes, all entry has an added

field which is a interface to the data point it is

connected with in the ClusterTree++. In this

scenario, we can navigate from the simple prefix

B+ tree back to the ClusterTree++ proficiently.

The separators in the index set is lesser than the

keys in the sequence set ==> Tree is even smaller.

Consecutive insertions are not a better method

since splitting and redistribution are reasonably

costly and would be finest to make use of only for

tree maintenance. Beginning from an arranged

file, on the other hand, it is easy to place the

records into sequence set blocks one by one,

opening a new block when the current working

block with fills up. Since, the changeover is done

among two sequence set blocks, it is easy to

determine the shortest separator for blocks. These

separators are collected into an index set block

that is constructed and added in memory until it is

occupied. The benefits of filling a simple Prefix

B+ Tree more or less constantly outweigh

shortcomings related with chance of generating

blocks that enclose very few records or very few

separators.

A specific improvement is that the loading

procedure goes more rapidly since: The output can

be written in series; only one pass can be made

over the data; No blocks required to be rearranged

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

183

during the process. The major benefit after the tree

is loaded is that the blocks are 100% occupied.

Sequential loading generates a degree of spatial

locality inside the file ==> Seeking can be

reduced. The major three stipulations are: In case

when blocks are divided in the sequence set, a

fresh separator has to be introduced into the index

set. When blocks are combined in the sequence

set, a separator has to be eliminated from the

index set. When records are re-allocated among

blocks in the sequence set, the value of a separator

in the index set have to be transformed.

Construction

The stages in the building of

ClusterTree++ includes the production of

ClusterTree++ and developing of simple prefix

B+ tree in parallel. The developmet of the

ClusterTree++ is same as the development of

ClusterTree+ and tehn every internal node and

leaf node has to set the ct(current time) and ht

(historic time) as the current time.Since there is no

information related to the insertion time of the

original data points in the dataset, therefore it is

mandatory to fix the information as a result it is

essential to fix the insertion times of the entire

original data points as the current one. When new

data points are introduced into the structure it has

to be recorded into the structure. Meanwhile,the

current time datais incorporated by a leaf node

using the simple prefix B+s tree. All the L fields

of the entries in the leaf node of Cluster Tree+ has

to be pointed to the generated leaf node in simple

prefix B++tree.

Processing of the ClusterTree

Insertion,Query,Deletion are the most important

processing of the Cluster Tree++

 Insertion

For every new incoming data point, it’s important

to divide it into one of the three groups: Cluster

points: they are the duplicates or extremely similar

to particular data points in a cluster inside a

specified threshold. Close by points: They are the

data points which are certain points in the clusters

within a specific threshold. Random points: They

are the data points which are not neighbors and

distant from the entire clusters and cannot be

bounded, or even at every level they cannot be

incorporated. But they do not mention any

neighboring cluster points inside a specified

threshold. finally, in agreement with the type of

the new coming data point, its is required to apply

the insertion algorithm of Cluster Tree to serially

insert data point to a specific leaf node of Cluster

Tree++ and with the insertion time in the T(time)

field of the new entry of the leaf node, which

includes the inclusion of time details into the

simple prefix B++ tree. The L(link) is a link

between the specific leaf node in Cluster Tree++

to the new entry the field of the new entry

in the specific leaf node in Cluster Tree++ to the

new entry in leaf node.

Query

Queries are classified into two types based

on time ,The first category is the time irrelevant

queries which includes the range queries and

Nearest neighbor queries, the second category is

time related query which includes time related

queries with certain time period constraint. For

example, specific users may demand neighbors to

a specific data point which are included into the

structure in equal time as the insertion time of that

data point. It is based on the original Cluster Tree

query algorithm to solve the former category of

queries.

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

184

Table 3.Algorithm- time-related queries

Problem: Given a data point and a time stamp,

the algorithm calculates the set of data points

 in ClusterTree which satisfies the

query.

Algorithm

1. Calculate the set A of candidate data points

in the ClusterTree++;

2. Locate an entry x in simple prefix B+tree

where the time data of simple B+tree

is close to the time stamp of query.

3. Locate the set of entries with specific

threshold in time distance to the entry x in

simple prefix B+ tree.

4. Construct a set B of equivalent data points

in ClusterTree++ using the L field entries

in simple prefix B+tree.

5. Intersection of sets A and B gives the

resultant data sets.

Deletion

The irrelevant data has to be deleted from time to

time from many systems. The data administrator

might need to delete those data which are

introduced to the system and in some situations

the might want delete some date inserted at some

stage in a specific period.

Table 4.Algorithm- time-related deletion1

Problem: Given a time stamp ts, the algorithm

constructs a new ClusterTree after removing the

outdated data.

Algorithm

1. Locate the entry x in the simple prefix B+tree

where the time data of entry x is close to the

time stamp ts.

2. Retrieve the entries, set A which are older than

entry x from simple B+tree.

3. Locate the resultant set B of data points in

ClusterTree++ using the L field entries in

simple prefix B+tree

4. Recursively cut older entries than entry x from

the simple prefix B+tree.

5. Set A is cut from simple prefix B+tree.

6. Set B is cut from ClusterTree++

In addition they can just point out to the data

system to automatically fine-tune itself. The

ClusterTree+ can support such user specified

deletions.

Table 5.Algorithm- time-related deletion2

Problem: : Time stamp ts1, time stamp ts2 out puting

the new ClusterTree specified time stamps ;

Algorithm

1. find the entry x in simple prefix B+ tree the

time data of whose is right closest to the time

stamp T1

2. find the entry y in simple prefix B+tree the

time data of whose is left closest to the time

stamp T2;

 if the time data of entry x is newer compared

to that of entry y,

 exit;

3. get the set the entries in the simple prefix B+

tree

4. find the set b of similar data points in

ClusterTree++ by means of the L field in the

entries in simple prefix B+

5. cut those entries in the simple prefix B+tree

6. cut set a seen in the B simple prefix B+tree;

7. cut set b in the ClusterTree++.

Table 6.Algorithm: automatic adjustment

Problem: This recursive algorithm automatically

adjust the new ClusterTree.

Algorithm

1. Recursively check each subcluster

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

185

2. Do

2.1 Check whether the gap between

subcluster’s not filed exceeds specific

threshold.

If yes either delete the complete

subcluster or move the complete

subcluster into

the secondary memory until it no new

data is reported. Also remove the

equivalent

entries from simple prefix B+tree.

2.2 Check whether a subcluster’s old

density exceeds specific threshold. If

yes rearrange subcluster subsequently in

order to get rid of old data part.

2.3 Check for two closer subclusters and

those with similar time nature. If found

merge them into a single subcluster

which gives a reasonable and more

compact vision.

Return.

4. EXPERIMENTAL RESULTS AND

DISCUSSION

Here, distributed multi dimensional dataset is

taken as input. Experiment demonstrates that

DWPCM executes better than WPCM for multi-

dimensional dataset having streaming activities. It

is to be observed that, the proposed DWPCM

algorithm is an enhancement of WPCM. The

subsequent real-world datasets are employed for

conducting the tests: CAR includes 2,249,727

road segments of California obtained from

Tiger/Line datasets; (b) HYD includes 40,995,718

line segments representing rivers of China and (c)

TLK includes up to 157,425,887 points obtained

from the elevation data of China.

4.1 Memory Usage

Given that DWPCM process data as amount of

chunks calculated as memory utilization of every

chunk independently and get the largest value as

the closing memory consumption for DWPCM. In

view of the fact that the dataset is streaming in

character, it is not necessary for DWPCM to

access over one chunk at a time. Figure 1 shows

the percentage of improvement in terms of

memory consumption by proposed (DWPCM) as

compared against the Baseline Algorithm

(WPCM).

Fig.3. Memory Usage Comparison

It is clear from table 7, the improvement is in

excess of 97% for the entire three datasets.

WPCM makes use of the complete dataset at a

time and that's why it needs adequate memory to

hold the entire dataset. This is the cause why

WPCM needs much higher memory than the

proposed algorithm.

Table 7.Memory Usage Comparison

Input

Dataset

DWPCM with

Map reduce (%)

WPCM

(%)

CAR 97.05 92

HYD 97.25 92.35

TLK 97.62 95.21

4.2 Selectivity

Figure 4 demonstrates the time and amount of

page writes for the purpose of adding bounding

89

90

91

92

93

94

95

96

97

98

99

CAR HYD TLK
M

em
o

ry
 U

sa
g

e
 (

%
)

Number of Clusters

DWPCM with Map reduce WPCM

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

186

boxes, with several piece of data of large sizes. In

view of the fact that the data portion size reduces,

then the amount of leaf nodes in the indexing trees

increases, because only a predetermined size

dataset undergoes partitioning. If the data portions

size is (or), approximately

40,000 data portions are inserted into the indexing

trees, however when the data portion size is

 , approximately 560,000 data portions are

present.

Fig.4. Selectivity Comparison

In actual fact, multi-dimensional indexing

structures have to supply low amount of file

access throughout the search since accessing to

file pages diminishes the response time to a

specific query and increase the selectivity. It is

clear from the table 8 that the proposed indexing

scheme of DWPCM with cluster tree++ is

perform well than the WPCM with cluster tree+.

Table 8.Selectivity Comparison

Number of

Data Chunks

DWPCM with

Cluster++

WPCM with

Cluster +

200 240 540

400 354 621

600 546 723

800 654 850

4.3 Scalability with query

Figure 5 demonstrates the query experiment

result. It is obvious from the results that Cluster

Tree+ can resolve the multi-dimensional query

inefficient setback, however Cluster Tree+ ++

execute much better than Cluster Tree+.

Fig.5. Scalability Comparison

Table 9 shows the values of scalability of the

methods. It proves that the multi-dimensional

distributed index ranges approximately linear with

the number of nodes in the system.

Table 9.Scalability Comparison

Number

of Data

Chunks

DWPCM

with

Cluster++

(ms)

WPCM

with Cluster

+ (ms)

200 694 700

400 725 812

600 810 915

800 902 1025

5. CONCLUSION

In the scenario of distributed multi dimensional

data, clustering conventional similarity measures

100

200

300

400

500

600

700

800

900

1000

200 400 600 800

N
u

m
b

er
 o

f
p

a
g

es
 a

cc
es

s

Number of data chunks

DWPCM with Cluster++

WPCM with Cluster +

500

600

700

800

900

1000

1100

1200

200 400 600 800

T
im

e
co

st
 (

m
s)

Number of data chunks

DWPCM with Cluster++

WPCM with Cluster +

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

187

are typically will not provide the significant result.

In order to overcome this issue, a Distributed

Weighted Possibilistic Clustering Algorithm

(DWPCM) is proposed here. DWPCM can be

utilized for high dimensional datasets having

streaming activities. Additionally, a customized

edition of ClusterTree+ called as ClusterTree++ is

proposed to competently maintain the time-

based queries and deletions specified by the user.

The ClusterTree++ can maintain the set of data

constantly in the most rationalized condition to

uphold the competence and effectualness of data

insertion, query and update. It is a ordered

structure of clusters and subclusters which

integrates the representation of cluster into the

index configuration to realize efficient and well-

organized recovery of data. Experiments are done

to assess the ClusterTree++. This scheme will be

supportive in the areas of data fusion wherever the

data change with dynamism and existing schemes

frequently not succeed in solving the problem of

keeping a certain structure constantly holding the

most efficient data. This scheme can vigorously

monitor the status of data of the system and

competently evade the outdated data and

simultaneously, reorganize the structure of the set

of data.

REFERENCES

[1] B.S. Manjunath and W.Y. Ma. Texture

Features for Browsing and Retrieval of Image

Data. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 18(8):837–842,

August 1996.

[2] A. Guttman. R-Trees: A Dynamic Index for

Geometric Data. In Proceedings of the

ACMSIGMOD International Conference on

Management of Data, pages 47–57, 1984.

[3] Stefan Berchtold, Daniel A. Keim, and Hans-

Peter Kriegel. The X-tree : An index structure

for high-dimensional data. In Proceedings of

22th International Conference on Very Large

Data Bases, VLDB’96, pages 28–39, Bombay,

India, 1996.

[4] D. M. Gavrila. R-tree index optimization. In

T. Waugh and R. Healey, editors, Advances in

GIS Research. Tayor and Francis, 1994.

[5] I. Kamel and C. Faloutsos. On packing R-

trees. In Proceedings of 2nd International

Conference on Information and Knowledge

Management(CIKM-93), pages 490–499,

Arlington, VA, November 1993.

[6] G. Sheikholeslami, W. Chang, and A. Zhang.

Semantic clustering and querying on

heterogeneous features for visual data. In The

proceedings of the 6th ACM International

Multimedia Conference (ACM Multimedia

’98), pages 3–12, Bristol, UK, September

1998.

[7] Tian Zhang, Raghu Ramakrishnan, and Miron

Livny. BIRCH: An Efficient Data Clustering

Method for Very Large Databases. In

Proceedings of the 1996 ACM SIGMOD

International Conference on Management of

Data, pages 103–114, Montreal, Canada,

1996.

[8] Dantong Yu and Aidong Zhang. ClusterTree:

Integration of Cluster Representation and

Nearest Neighbor Search for Image Databases.

In IEEE International Conference On

Multimedia and Expo, New York City, July

2000.

[9] Ester M., Kriegel H., Sander J., Xiaowei Xu

(1996), “A Density-Based Algorithm for

Discovering Clusters in Large Spatial

Databases with Noise”, KDD‟96, Portland,

OR, pp.226-231.

[10] Raymond T. Ng and Jiawei Han (2002),

“CLARANS: A Method for Clustering

Objects for Spatial Data Mining”, IEEE

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

188

[11] Juha Vesanto and Esa Alhoniemi, “Clustering

of the Self-Organizing Map”, Transactions on

Knowledge and Data Engineering, Vol. 14,

No. 5,pp.586-600,2000.

[12] Guha S, Rastogi R, Shim K (1998), “CURE:

An efficient clustering algorithm for large

databases”, In: SIGMOD Conference,

pp.73~84.

[13] Ankerst M., Markus M. B., Kriegel H., Sander

J(1999), “OPTICS: Ordering Points To

Identify the Clustering Structure”, Proc.ACM

SIGMOD‟99 Int. Conf. On Management of

Data, Philadelphia, PA, pp.49-60.

[14] Kaufman L. and Rousseeuw P. J (1990),

“Finding Groups in Data: An Introduction to

Cluster Analysis”, John Wiley & Sons.

[15] John A. Bullinaria, “Self Organizing Maps:

Algorithms and Applications”,Introduction to

Neural Networks : Lecture 17,2004

[16] V. Gaede and O. Gunther. Multidimensional

access methods. ACM Computing Surveys,

30(2):170–231, 1998.

[17] R. Orlandic and B. Yu. A retrieval technique

for high-dimensional data and partially

specified queries. Data Knowl. Eng., 42(1):1–

21, 2002.

[18] R. Weber, H.-J. Schek, and S. Blott. A

quantitative analysis and performance study

for similarity-search methods in high-

dimensional spaces. In VLDB’98, Proceedings

of 24rd International Conference on Very

Large Data Bases, pages 194–205, 1998.

[19] Fodor I.K. A Survey of Dimension Reduction

Techniques. Technical Report Lawrence

Livermore National Laboratory

(LLNL),UCRL. ID-148494, 2002.

[20] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K.

Elhardt, R. Bayer, B. Forschungszentrum, and

T. Mnchen. Integrating the ub-tree into a

database system kernel. In VLDB ’00

Proceedings of the 26th International

Conference on Very Large Data Bases, pages

263 – 272, 2000.

[21] Bentley. Multidimensional binary search trees

used for associative searching.

Communications of the ACM, 18:509–517,

1975.

[22] D. Lomet and B. Salzberg. The hb-tree: A

robust multiattribute search structure. In Proc.

IEEE international conference on data

enginerring, 5:296–304, 1989.

[23] M. S. Y. Ohsawa. Bd-tree: A new n-

dimensional data structure with efficient

dynamic characteristics. Proceedings of the

Ninth World Computer Congress, IFIP, pages

539–544, 1983.

[24] S. M. K. Chakrabarti. The hybrid tree: An

index structure for high dimensional feature

spaces. In Proceedings of the 15th

International Conference on Data Engineering

(ICDE’99), pages 440–447, 1999.

[25] B. Stantic, R. W. Topor, J. Terry, and A.

Sattar. Advanced indexing technique for

temporal data. COMSIS - Journal of Computer

Science and Information Systems, 7(4):679–

703, 2010.

[26] Wang W., Yang J., Muntz R(1997), “STING:

A statistical information grid approach to

spatial data mining”, In: Proc. of the 23rd

VLDB Conf. Athens, pp.186~195.

[27] Rakesh A., Johanners G., Dimitrios G.,

Prabhakar R(1999), “Automatic subspace

clustering of high dimensional data for data

mining applications”, In: Proc. of the ACM

SIGMOD, pp.94~105.

AUTHORS

1. Sunil Sunny Chalakkal is working as an Asst.

Professor in the Dept. of Computer Science ,

An Effective Clustering method with Search Structure for Large ,…Sunil Sunny Chalakkal,et al,..

189

St Thomas college Trichur . He received

MCA & MPhil from Bharathiar University

Coimbatore with specialization in Data

Mining. He has more than 15 years of teaching

experience. Sunil sunny is a research scholar

in Anna University

2. Ms.M.Rajalakshmi is currently working as an

Associate Professor at Coimbatore Institute of

Technology, Coimbatore in the Department of

Computer Science Engineering & Information

Technology. She did her Ph.D.

in Computer Science and Engineering at Anna

University, Chennai and she obtained M.E.

Computer Science and Engineering from

P.S.G.College of Technology, Coimbatore

with distinction in the year 2005. . She has

19 years of teaching experience

and published four papers in international

journal and one paper in international

conference.

3. Dr. R. Vijayakumar is currently working as

the Professor At School of Computer Science,

M.G.University, Kottayam. He has 32

years of teaching experience

and published 11 papers in international

journals and 31 papers in national journals

http://cit.edu.in/staffdetails.php?staff=188
http://cit.edu.in/staffdetails.php?staff=188
http://cit.edu.in/staffdetails.php?staff=188
http://cit.edu.in/staffdetails.php?staff=188
http://cit.edu.in/staffdetails.php?staff=188

